GENERAL SADDLEPOINT APPROXIMATIONS WITH RPPLICATIONS TO
L—STRTISTICS(U) PRINCETDN UNIY NJ DEPT OF STFITISTICS

S EASTON ET RL SEP 84 TR-274-SER-2 AR0-19442. 21-MA
UNCLASSIFIED DBRGZ9 82-K-0178 F/G 1271

. RAD-A150 @73

END
men
onic




AT R

g
—IQELIQ
=Il°:'m

.. Ol H
—_— HWIB

N
3

1.6

|

it

i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




n
N
£
4
1
1
1
k
1
|
“d
3
E
I.J
4
o
r
A
J
t

INCLASSIFIED v
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) L
REPORT DOCUMENTATION PAGE BEFORE oL e FORM

1. REPONT NUMBER " 2. GOVYT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER C e
ARO 19442.21-MA N/A N/A T

4. VITLE (and Subttcle) ‘| 8. TYPE OF REPORT & PERIOD COVERED o
General Saddlepoint Approximations with Technical report, Sept.'84 Zj";ij

Applications to L-Statistics

§. PERFORMUING ORG. REPORT NUMBER

WTHOR(a)
George S. Easton & Elvezio Ronchetti

§. CONTRACT OR GRANT NUMBER(se)

DAAG29- 82-K-0178

'ERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM s':.;usn'r. PROJECT, TaSK
Statistics Dept., Princeton University AREA & WORK UNIT NUMBERS T
Fine Hall, Washington Rd., ' C
Princeton, New Jersey 08544 oo
CONTROLLING OFFICE NAME AND ADDRESS

U.'S. Army Research Office
Post Office Box 12211

S
b =
.Rasea:ch_I.ua.u.%l.e_Ea.:kr NC 27709 -
; MONITORING AGENCY NAME & ADDRESS(If differant from Controliing Ottice) 15. SECURITY CLASS. (eof thie report) - 4
-~ d
L

12. REPORT DATE —
September 1984

13. NUMBER OF PAGES

AD-A150 073

Unclassified
"18e. DECL ASSIFICATION/ OOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report) T, ,Tu ‘ d
Approved for public release; distribution unlimited. _{;-;Fa ELECTE N

&ﬁa N '."’.1

it eV

\:§ FEBT7 1385, ey

17. DISTRIBUTION STATEMENT (of the ebatrect entered in Block 20, I different from Report) S e

NA

+ A &

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are .
those of the author(s) and should not be construed as an official :
Department of the Army position, policy, or decision, unless so

‘ ntation
19. KEY WORDS (Continue on teverse side if necessery end identily by block nuamber)

g

ey .

ot Small sample asymptotics; Edgeworth expansions; Efficient L-estimator;
s

Trimmed mean

o
Fi ABSTRACT (Cantisus an reverse ofde H nuceesary and identily by dlock nmamber) :::'{:
n : . . :-.':w
= Saddepoint approximations are extended to general statistics. The technique is
- applied to derive approximations to the density of linear combinations of e
order statistics, including trimmed means. A comparison with exact results -
L shows the accuracy of these approximations even in very small sample sizes. wle
.. .. RN
}‘" ] o
2 85 91 22 0np
S 00, .52 W73  €omou or 1 wov es is omsorETE UNCLASSIFIED
laacg.“.f-_r;,’-ﬁf_;,,_ ------ T s et e S S s L el e e
bl shllhol H iy DWW R R | i COAJE Y ; - -.‘ A ." - -1’_:-' -:‘. "\' ‘-- :‘ .-“-‘_ . ::\-.:‘ :;_:;. ;. .:\_: :_;\‘_: U




GENERAL SADDLEPOINT APPROXIMATIONS

WITH APPLICATIONS TO L-STATISTICS

George S. Easton
and

Elvezio Ronchetti

Technical Report No. 274, Series 2

s /920 /7#%‘! .'u-mﬁ

Princeton University Rty

"4.:" ©o.ctal

'
» * ’
' '\-‘."’ﬂ, )

. ‘v, f ‘
. rff, ’7/ . \{
T \ .
! i

e pmseremaie

=~

15t . “; For
Department of Statistics .. .naion _ / !
. R ¥ 3 § ;

September 1984 RS ETE -;:n: S

tract # DE-ACO-281ER10841.A000.

This research was supported by ARO (Durham) contract # DAAG29-82-K-1078 and DOE con-

———d

’

. A" i‘i..' ':‘ .- - '.' o




s General Saddlepoint Approximations 2

1. Introduction
Suppose we are interested in the density f , of some statistic T, (x ), --* , xp ) where
Xx) -+ ,X, are n independent identically distributed observations with the underlyving

densitv f . If. after suitable standardization. T, is asvmptoticallv normally distributed, one
can usuaily improve the approximation of f , given by the asymptotic distribution bv using

ey

*, where the constant term is the normal density. It turns out in general

the first few terms of an Edgeworth expansion (cf. Feller 1971. Ch. 16). This is an expansion
L in powers of n

that the Edgeworth expansion provides a good approximation in the center of the density. but

can be inaccurate in the tails where it can even become negative. Thus the Edgeworth expan-

sion can be unreliable for calculating tail probabilities (the values usually of interest) when

the sample size is small. Saddlepoint and small sample asymptotic techniques overcome this

problem.

Saddlepoint techniques were used by H. E. Daniels in a pioneering paper in.1954 to
derive an approximation to f , where T, is the mean of x ), ** ,Xx,. The key idea is as
follows. The density f , can be written as an integral on the complex plane by means of a
Fourier transform. Since the integrand is of the form exp (n w(z )), the major contribution
to this integral for large n will come from a ne;ghborhood of the saddlepoint z ¢, a zero of
w' (z ). By means of the method of steepest descent, one can then derive a complete expansion
for f, with terms in powers of n ~!. Daniels (1954) also showed that this expansion is
equivalent to that obtained using the idea of the conjugate density (see Cramer, 1938; Khin-

chin, 1949). The key point can be summarized as follows. First recenter the original under-

lying distribution S at the point ¢, where f , has to be approximated, that is, to f define

its conjugate (or associate) density hy . Then use the Edgeworth expansion locally at t o with
respect to h, and transform the results back in terms of the original density f . Since ¢ ¢ is

the mean of the conjugate density h, » the Edgeworth expansion at ¢ o with respect to hy oisin

fact of order n ~! and provides a good approximation locally at that point.
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-- General Saddlepoint Approximations 3

Smal) sample asymptotic techniques which are closelv related to saddlepoint techniques
were introduced bv Hampel (1973) and are based on the idea of recentering the original distri-
bution. The main difference is the expansion of the lop-derivative f ,'/ [, instead of f .
A consequence of this is that the normalizing constant, that is the constant that makes the
total mass equal 1. must be determined numericallv. Often this turns out to be an advantage
since this rescaling mav improve the approximation. The unusual characteristic of these
approximations is that the first few terms (or even just the leading term) of the expansion

often give a very accurate approximation in small sample sizes.

] In the last few vears there has been a revival of interest in this area. Small sample

asvmptotic approximations are now available for M-estimates i location (Field and Hampel,

1982; Daniels, 1983) and for general multivariate M-estimators (Field, 1982). Durbin (1980)
applies similar techniques to derive approximations of the density of sufficient estimators.
Field and Ronchetti (1983) derive small sample asymptotic approximations to the tail area of
M-statistics and use them in robust testing. We refer to the papers by Barndorff-Nieison and
Cox (1979) and Field and Hampe] (1982) for an overview and comparison between these new

techniques and the classical ones.

The main goal of this paper is to show that saddlepoint techniques can be carried out for
: general statistics, including for example linear combinations of order statistics. ln section 2 we
present the basic idea. We show that whenever an Edgeworth expansion for the density f ,

of T, is available, a saddlepoint approximation can be carried out and will in general improve

it. In fact, from the Edgeworth expansion we obtain an approximation for the cumulant gen-
erating function of 7', . Using standard saddlepoint techniques we then work out an expan-

sion for f , in powers of n ~l.

In the section 3, we apply this result to L-statistics and in
sections 4 and S we present numerical results for the most efficient L-estimator under the
logistic distribution and for trimmed means of exponential observations. Exact results are
compared with asymptotic normal, Edgeworth, and saddiepoint approximations. This shows

the accuracy of the latter in very small sample sizes. Finally, in section 6 we outline some

further research directions, including the relationship with bootstrap techniques.
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- General Saddlepoint Approximations . 4

2. General Saddlepoint Approximations

Let x,, - ,x, be n independent identically distributed real valued random variables
with density / andlet Tp{(x}, -, x, ) be a real valued statistic. Denote by f , the den-
sty of T,. bv M,()= f e’* f ,(x)dx the moment generating function. by
K, (1) =log M, (1) the cumulant generating function. and by p, (1 ) = M, (it ) the charac-

teristic function.

Bv Fourier inversion

falx)= s [ Myt e~ as

i oo
#_LM,. (nT de ="T* aT

n T rT RR (T -1
" —ix )
2m',_f,: dr . (2.1)

where 7 is any real number in an interval containing the origin where the moment generat-

ing function exists, and
Ry (T)=Kn(nT )/ n. (2.2)

Note that if T, is the arithmetic mean, R, (T ) = K (T ), the cumulant generating function

of the underlying density f and in this case (2.1) equals formula (2.2) in Daniels (1954).
The idea is to approximate R, (7 ) and then apply the saddlepoint technique to the integral in

(2.1) along a suitable choice of the path of integration.

Suppose an Edgeworth expansion for f , is available and denote bv f n the Edgeworth
approximation up to and including the term of order n =1 Let if,, and X n be the moment
generating function and the cumulant generating function of ] n Tespectively, and let

;l,, (T )= K, (nT ) n. Then by (2.1) we have

SR el IO LR
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- - General Saddlepoint Approximations 5

falx)=Za(x )+ T n(x) (2.3)
TH® (R (T =Tz )
= Zpa g [ " T ar (247
T=i 0O

where Zp{x )= f,(x)=f,(x) Now the classical Ldgeworth expansion provides an
expansion for k,, (7" ) (see below) and this choice uniformly bounds the error term .Z,.
Applying the saddlepoint technique to the integral in (2.4) improves the Edgeworth approxi-
mation by eliminating the term of order n ~*, More preciselv. {rom the Edgeworth approxi-
mation (up to the term of order n ~!) one can obtain log p, (t ) and therefore ;(n (T ) in terms

of the cumulants. That 1s,

noiT?  Kyoin?T?3 4 Kan oniT*
2 6 24 )

Ro(T)=unT + (2.5)

where u, is the mean and ;7 the variance of T,. Note that u, =0 (1), 0, =0(n ~"3),
and k j, =0 (n~7//2*!)for j = 34, since we have assumed that the Edgeworth expansion

for f » exists. In general, u, and 0, are not known exactly but expansions of the form

a
Men =u+—n'—+0(n-l),

= 9 b -3/2
g On —n,/:+n—3/—2—+0(n ),
.
;:- will suffice to keep the same order in the approximation.
? Applying the saddlepoint technique (cf. Daniels, 1954) to the integral in (2.4) gives the
r .
- saddlepoint approximation of f , with error of order n ~!:
2 " R, T, -1
E n n ) - x )
- ()= |t e 2,
E 8n 2R " (T,) o)
S —
:'_. where T, is the saddlepoint determined as a solution to the equation \‘}
5 ) e !
s R'n(Ty)=x ]
b o ~
. and R, and R ", denote the first two derivatives of R, . ey
g A
2
: "-.‘:\?'.1
=
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General Saddlepoint Approximations ]

Remark 1: Another approximation for R, (T ) can be obtained using pp (¢ ) given by the Edge-
worth approximation instead of the expansion of log p, (7 ). This amounts to approximating

R, (T )by

272 3392 4. 4rd, . 2 6 6
- o T o, T 3 o, T *+ n °a;>T
R,,(T’=;:.,,T+£—§—+—’lllog 14—~ "6 Ko, Han 7 On 7,,‘(3." - . Q)

Since the saddlepoint approximation based on (2.7) gives a poorer approximation in the exam-
ples considered than that based on (2.5) we will not include this approach in the numerical

examples presented in sections 4 and S.

Remark 2: By the same computations as in Daniels (1954) one can express f , by means of its
conjugate density, namely

niR, (Tr=7x

falx)=e Ry O (2.8)

where h, , is the conjugate density proportional toe” ™ f , (u +x ). The choice 7=7  and
an Edgeworth expansion of h, ,(0) leads to the saddiepoint approximation (2.6). Note that the

term of order n ~* disappears because f , is recentered at x through h, 1, ie.
Ehu .rU = fuhn .‘T(u )du = Rn (T)—x =0

if r =T,, the saddlepoint. However, one can think of other ways of recentering f ,. For

instance, one can use the median instead of expectation and solve the equation (for T ))

0
fh,,;‘(u)du =1/2.

Remark3: An alternative way of approximating the density of a general statistic by means of
sadc'lepoint techniques is the following (see Field, 1982). Suppose 7, can be written as a
functional T of the empirical distribution function F ", ie. T, = T (F ‘")), First linearize

Th using the first term of a von Mises expansion (cf. von Mises, 1947)

To ST (F)+ L, (T F), (2.9)

where F is the underlying distribution of the observations,
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n
Ln(TV)=n") T 1k x4 (2.10)
i=1

and /F (x T F ) is the influence funcuon of 7 at } icf. Hampel. 1968, 1974). Now applv

the classical saddlepoint approximation to L, (7 ,V ) which is an average of independent
l identicallv distributed random variables. In preliminary numerical results this approximation
does not perform as well as the one given by (2.6). Moreover. the order of the approximation

based on (2.9) is an open question.

3. Applications to L-statistics

In this section we apply our general saddlepoint technique to derive approximations to

the density of linear combinations of order statistics.

We consider statistics of the form

n
Tn =n_lzcmx(.w 3.1
1=
where x(1)Sx(2)€ *-- €x\, ) are the order statistics and € |p. " Cpp are Weights gen-

FurLr TN T e T T
. e .

S erated by a function J : (O,1)=R

. Cn =J

Typically the conditions imposed on J are those that guarantee the existence of an Edgeworth

i
n +1

., i =1 - .n

expansion (see below).

TR,

The distribution properties of l.-statistics have been investigated by many authors. Exact
distributions under special underlving distributions can be found in Weisberg (1971), Cicchi-

telli (1976), and David (1981). Asvmptotic normality of these statistics has been shown under

,‘T' .v: L ".‘ -'.. ."_ N

different sets of conditions; see, for instance, Chernoff, Gastwirth, and Johns (1967), Shorack

(1972). Stigler (1974), David (1981). Finallv, Helmers (1979,1980) and van Zwet (1979)

le

= derived Edgeworth expansions for L-statistics with remainder o (n =1). These will be the basic
v

!, elements of our approximation for we use them in conjunction with the saddiepoint tech-
nigue.

TS
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= -
To calculate the saddlepoint approximation to j,, at x we need to evaluate the func- -
‘,: tion Ry (¢ ) and its first two derivatives at the point 7 o where 7  is such that »

‘ Ro(Toi=x (3.2)
; and R, (1 ) is given by equation (2.5).
We would like to be able to plot and study the saddlepoint approximation of the entire '

density, so we tvpicallv calculate the saddlepoint approximation at about five hundred x coor- .
k dinates. Thus. the procedure has been implemented as a single precision Fortran program
o (within the S statstical environment). The implicit equation (3.2) is solved for each x coor- .j

dinate using a Newton method. The implemented strategy is to order the x values and choose

a starting point which gives convergence to the required accuracy for the first x value. For {;“..-_,':Z
5 each subsequent point, the initial solution for the Newton method is chosen to be the solution ;-,_‘.
for the previous x coordinate. Since the solutions do not change much for small changes in .

: the x coordinate, convergence for subsequent points is rapid and the method is fast and
_ effective.

Saddlepoint approximations for distributions or tail areas are obtained from the : L":_‘.
corresponding density approximations by integrating using Simpson’s rule. A high degree of
accuracy is obtained due to the large number (501) points at which the density is evaluated. [*

f:j 4. Example 1: The Most Efficient L-Estimator Under the Logistic Distribution
7; As a first example of the technique described above we consider the asvmptotically first ! o
“ order efficient L-estimator for the center 8§ of the logistic distribution
- Fx—-0)= 1+—e}(‘_-r) .

This L-estimator has the weight function
:-: J(s)=6s(1=s). E.;::::.
Thus we are approximating the statistic 7, of the form (3.1) where, !_-“.' X

X o
i
e e e e N L s NI e T D I e e NN




General Saddlepoint Approximations- 9

i
n+1

Cw=6

i
1—-
l n +)
Helmers (1980)) derives the Fdgeworth expansion {for the distribution of
Tp* = (T, —pun ) On.and for the distribution of the related staustic 7,* = n AT, —u)/ 0.

where x4 and o are the asvmptotic mean and variance. The Edgeworth expansion for the den-

sitv of 7 *, 1s given bv

- K K x?

S milx)=ox) 1+-2—"(x A—3x )+-247"(x —6x 2+3)+ -;T"(x 6—15x 44+45x2—-15) |,(4.1)
{

where, &x ) is the standare, normal density, k3, = 0, and kg4n, = 24/ (20n ). This approxi-
mation forms the basis for the saddlepoint approximation. It should be noted that in this case
K3, = 0 so the term of order n ~* disappears in the Edgeworth expansion. Thus. this expan-

sion is of order n ~! and should be very competitive with the saddlepoint approximation.

The Edgeworth expansion for 7,** is derived from (4.1) by using the approximations

mn =p+0(1/ nd) (4.2)
and,

o, = V3/ n"4+(11=WV3/ n ¥ 2401/ n 2. (4.3)

Since the exact mean and variance for the statistic 7,, are not available, the equations (4.2)
and (4.3) can be used in the saddlepoint method without changing the order of the approxima-

tions.

Numerical results for the distribution of the statistic T,** for sample sizes 3. 4, 10, and
25 are given in tables 4.1-4.4 for the right half of the distribution since the density is svm-
metric. The exact values for the distribution are taken from Heimers (1980). These exact
values were calculated by numerical integration for sample sizes 3 and 4, and by Monte-Carlo
simulation using 25,000 samples for sample sizes 10 and 25. The rescaled saddlepoint approxi-
mation was calculated by integrating the saddlepoint approximation for the density and then
rescaling so that the density integrates to one. This technique was recommended by Hampel

(1973) as a method for improving the accuracy of saddlepoint approximations in small sample

PR R '-'_'u'_'-"'-' R T T N T T YU L PR P N P
"" "':!n'\'_'."'-'.\. DR "'-‘.'A."; '.'.':.“"1'.'-."1'.'.’.'-' AR \'.'-'."._" --"!_'.4""":.'" '-.,A";'-.;':.\_.-';ﬁ' SRS ; s
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General Saddlepoint Approximations 10

sizes. The unscaled saddlepoint approximation for the tail area was calculated by integrating
the right tail of the saddlepoint approximation for the density and subtracung from 1. The
values ior the Edgeworth approximation were recalculated from the formula given in Hel-

mers (1980).

Figure 4.1 plots the exact distribution. rescaled saddlepoint, Edgeworth. and normal
approximauions for sample size three. This plot shows that both the rescaled saddiepoint and
cdgeworth approximations are, in this example. superior to the normal approximation. Figure
4.2 shows the error from the rescaled saddlepoint approximation for the exact. Edgeworth. and
normal approximations. It is clear from this plot that there is some sort of (probably numeri-
cal) error in the circled values of the exact distribution. . Figure 4.3 shows the residuals from
the exact distribution (with the value in error eliminated) for the rescaled saddlepoint. Edge-
worth. and normal approximations. This plot cleariv indicates that the rescaled saddlepoint
approximation overall improves the Edgeworth approximation. Also, unlike the Edgeworth
and normal approximations, the rescaled saddlepoint approximation is wider tailed than the
exact distribution. so its error is in the direction of giving conservative tests and confidence

intervals.

Figure 4.4 shows the residual from the exact distribution for sample size 4. The overall

impression is essentiallv the same as for sample size 3.

Figure 4.5 shows the residual from the rescaled saddlepoint approximation for the
"exact”. normal. and rescaled saddlepoint distributions for sample size 10. In this case the
"exact” values were determined by Monte-Carlo simulation, and Figure 4.5 shows that the
variation in the "exact” values 1s substantial in comparison to the error in the rescaled
saddlepoint and Edgeworth approximations, so it is more difficult to be certain which approxi-
mation is better. Figure 4.6 shows the plot of the error from the "exact” distribution for the
rescaled saddlepoint and Edgeworth approximations. While the curves are no longer smooth
due to the noise in the “exact” values, the impression is much as before. Finally, for sample

size 25 both the saddlepoint and the Edgeworth approximation are nearly indistinguishable

.
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e

from the exact distribution.

Overall it appears that both the rescaled saddlepoint and Edgeworth approximations give

. very good approximations to the exact distribution of this statistic. The rescaled saddlepoint

technique generallv improves the Edgeworth approximation. and tends to err in the direction

which produces conservative tests and confidence intervals.

While we are not approximating the distribution function directlv, 1n practice these
approximations mav be used for caiculating tail areas. Thus, it is of interest to see how the
unscaled saddlepoint approximation for the distribution performs in the tails. Figure 4.7
shows the right tail area for the right half of the distribution for the exact. unscaled o ‘fli
saddlepoint. rescaled saddlepoint. Edgeworth. and normal distributions. From this piot it 1s
clear that the unscaled saddlepoint approximation is actually a better approximation in the
tails of the distribution. Figure 4.8 and 4.9 show similar plots for sample sizes 4 and 10. and

these plots show essentially the same behavior.

5. Example 2: Trimmed Means of Exponential Observations

This example considers approximations to the distribution of trimmed means of exponen- o '

tial observations. Let a; and a, be the fraction of the observations trimmed from the upper .
and lower tails respectivelv. Thus we consider statistics of the form (3.1) where L
0 fori Snaog ori 2n(l—ay , e

Cn = | n/k otherwise. g

n
where k is the number of non-zero weights. Note thatn ~! ¥ ¢, = 1.

=]

Helmers (1979) derives the FEdgeworth expansion for the distribution of _.
T*y, =(Tp, —un ) o, for trimmed linear combinations of order statistics with general
weights on the observations between the a; and 1—a, sample quantiles, and zero weight on
the remaining observations. This expansion forms the basis for the saddlepoint approximation.

In the case of linear combinations of exponential order statistics the Edgeworth expansion tor

S N P
- P T S TP I A
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General Saddlepoint Approximations 12

the density of 7',* is given by (4.1) with

and

where

1

Gm = n—j+1, ZCm-

The exact densitv for certain linear combinations of exponential order statstics 1s given

in David (1981). The density of T, is

—

Salx)s= Z—-—exp

i=) @ in
where,
a? "}
Win
H(am —apn )

and

An =Qajp/ n
for i =1, -+ .n provided a;, #=a;, for i = j. We will only consider special cases

which satisfv this condition.

We first consider the standardized mean of the three center order statistics in a sample of
five exponential observations. Figures 5.1-5.3 show the exact density and unscaled saddlepoint
approximation compared to the Edgeworth approximation which includes terms up to order
1/ n (high order Edgeworth), the Edgeworth approximation which includes terms up to order
n "2 (low order Edgeworth), and the normal approximation. These figures show that none of
the approximations perform particularly well in the left tail of the density. Both of the
Edgeworth approximations even become negative just to the left of the region of support of

the exact density. Of all of the approximations, the high order Edgeworth approximation most

LR T a ™A
- ~ " -'-‘llA( Py 'A_L_‘,
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closely follows the exact density on the region of positive slope. Neither the saddlepoint or
the normal approximations can ever be negative. The saddlepoint approximaton outperforms

the normal approximation except for a small region toward the center of the density.

In the right half of the densitv both of the Edgeworth approximations show polvnomial
like waves with the low order Edgeworth approximation being distinctly bimodal. The
saddlepoint approximation follows the general shape of the exact density quite closelv in this
half of the density. and is slightly wide-tailed. The "+" marks under the right tail in each of

the figures mark the .90, .95, .975, .99, and .995 quantiles of the exact distribution.

Figure 5.4 gives a close up of the density and the approximations in the 10% right tail.
and Figure 5.5 plots the error in the approximations in the right tail for the standardized
mean of the center three order statistics in a sample of five exponential observations. Figure
5.6 shows the error in the approximations for the mean of the center 9 order statistics in a

. sample of 11 exponential observations. Both of these figures show the same general behavior.
In both sample sizes, the saddlepoint approximation tends to be fairly stable and generallv "’*‘1
slightly wide throughout the tail except near the 10% point in sample size 11. Both of the L
Edgeworth approximations show polvnomial-like waves. The low order Edgeworth crosses

the exact distribution a couple of times in the tail switching from being too wide to too nar-

row and back. The low order Edgeworth approximation performs much better than the high
order Edgeworth approximation throughout this region and is competitive with the '.'-::'.:.-'_.‘
saddlepoint approximation in the 5% tail. It is sometimes too narrow however. In the 5% tail, o
the error in the normal approximation is only slightly larger in absolute value than the error |

in the saddlepoint approximation. but the normal approximation is uniformly narrow.

Figure 5.7 shows the exact distribution and approximations for sample size S, and Figures
5.7 and 5.8 show the error from the exact distribution for sample sizes 5 and 11 in the 10%
left tail. As in the case of the density approximations, both of the Edgeworth approximations

become negative. In sample size 5, the saddlepoint approximation performs better than the

others throughout the tail except for a small region between the 2.5% and 5% points where
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the low order Edgeworth approximation crosses the exact distribution. For sample size 11, the

same general pattern can be seen in Figure 5.9.

Figures 5.10-5.12 plot the exact and approximate tail areas for the right 10% tail. As in
the density case. the error in the Edgeworth approximations shows wavy behavior while the

saddiepoint approximation is uniformly wide. The Jow order Fdgeworth appears to be the

best approximation in terms of absolute error in the 7.5% tail. The absolute error of the nor-

mal approximation in the 10% tail 1s roughlv the same as that of the saddlepoint. but is once

)
i
i
;

again it i1s uniformlv narrow.

6. Discussion and Further Research Directions

+
) ' R P . .
O S B Y WU VPR

In this paper we have presented a technique for converting an Edgeworth approximation
into a saddlepoint approximation and have applied it to two examples of L-statistics for which
exact results are available. The numerical examples considered show that this saddlepoint
approximation is in general competitive with the Edgeworth approximations. In the first
example. the saddlepoint approximation is a definite improvement. In the second example, the
results are mixed. Nevertheless, in both these examples the saddlepoint approximation exhibits
some desirable properties which the Edgeworth approximations do not. First, the saddlepoint
approximation cannot be negative. Second, the saddlepoint approximation is unimodal and does
not show the polvnomial-like waves exhibited bv the Edgeworth approximations. Thus, the
error in the saddiepoint approximation tends to be locally stable. Finally, the saddlepoint
approximation tends to be wide in the tails so that error is in the direction of giving conserva-
tive tests and confidence intervals. As with the saddlepoint method for means (Daniels. 1954),

a theoretical advantage of this method is that the leading term of the saddlepoint approxima-

tion is the same order as the first two terms of the Edgeworth approximation. ‘\f N
These examples have other interesting features. The second example demonstrates that a R
higher order approximation is not necessarily better in spite of its theoretical appeal. In this ' . o

example, the low order Edgeworth approximation is far superior to the high order Edgeworth

A AT AT AT T N e )
A

e . e e e e e e e .
e '.:,s'_-.":‘.‘_\‘_'.' R e A S
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approximation in the right tail in both sample sizes. Both examples show that rescaling does
not alwavs improve the qualitv of the saddlepoint approximation, especiallv if interest is in

the tail areas.

Further research directions include application of these techniques to robust regression.
Also. these techniques can be made nonparametric by repiacing the underlving distribution by

the empirical distribution as proposed by Field (1984).

The problem discussed in this paper was originated by the interest in the distribution
properties of the so-called broadened letter values (bletter values) suggested recently by J.W.
Tukey as an improvement of the usual letter values in exploratory data analvsis (c¢f. Tukev
1977, Mendoza. 1984). Since bletter values are means of blocks of order statistics. the

saddlepoint approximations derived in this paper can be carried out.
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Exuct Distribution and A pproximations for Sample Size 3
for the Best |.-Esumator under the Logistic Distribution

1 | ﬁ

: ‘ | Rescaled , Unscaled i

v v Exact ! Saddlepomint Saddlepoint 1 Ldgeworth | Normal ;

. ? f — -

- 102 05640 05617 05738 0583 | 05793 |

- 104 1 06262 1 06217 0 06320 06069 | 06554 |
N 106 ¢ 0685 « 06787 | 06874 . 06592 0.7287

108 1 07391 1 07314 1 07387 (L7006 © (7881
E |10 1 07875 0 0779 07850 0.7582 0.8413

, 112 . 0.8248 | 08210 . 08280 08032 0.8849
S 114 08658 0 08572 - 0.8610 0.843¢ 0.9192

- 116 | 0.8958 ' 08877 . 0.890% 0.879% . 09452
[ 1.6 | 09202 09130 09154 09100 0.9641

{20 109397 ;0933 09353 -+ 093, 09772

22 | 09550 | 09499, 09513 . 09543 09861 .

24 1 09669 | 09628 | 09638 | 09691 | (09915 .

26 | 09758 ‘ 09727 | 09733 | 09795 | 0993

28 | 09825 | 09802 | 09807 | 09873 | 09974

30 | 09875 ’ 0.9858 ‘ 09862 | 09923 | 09987 |

H ] 1 | ;

Table 4.1

Exact Distribution and Approximations for Sample Size 4
for the Best L-Estimator under the Logistic Distribution

!

[ | B

Rescaled ~  Unscaled

»  Exact : Saddlepomnt * Saddlepoint - Edgeworth | Normal
o , i
[0.2 05663 0.5650 0.5750 05601 | 0.5793
o4 - 06307 @ 0.028] 06366 06190 06554
106 . 06919 . 06877 . 06949 06758  : 07257 |
108 - 07469 ; 07424 (.7484 0.7295  : 0.7881 |
(1007963 07914 ¢ 0.7962 0.779¢ ' 08413
12 1 08391 | 08341 . 08379 0.8236 . 0.8849 !
i 1.4 | 0.8752 0.8703 08732 . 0.8627 | 09192 |
1.6 | 09049 0.9003 09026 | 0.8960 | 09452
'1.8 i 0.9287 0.9247 09264 ;| 09235 0.9641 !
20 | 09474 0.9440 0.9453 0.9454 09772 |
2.2 1 09618 0.9591 0.9600 0.9622 0.9861
24 | 09726 0.9705 09712 0.9748 0.9918
2.6 | 09807 0.9791 0.979% 0.9837 0.9953
2.8 | 0.9865 0.9854 0.9857 0.9898 0.9974
3.0 | 09907 0.9899 0.9902 0.9939 0.9987

Table 4.2
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Exact Distribution and Approximations for Sumple Size 10
for the Best L-Estimator under the Logistic Iistribution

H i ! |
i

1
{ . Rescaled | Unsclaed |
» | Exact ! Saddlepont | Saddlepomnt : Edgeworth | \ormal
1 — i
| | !
i 102 05734 ° 05725 05776 | 05716 ! 05793
[ o4 i 06445 | 06426 06468 | 06409 @ (.6554
= L6+ 0.7089 0.7080 07115 | 0.705% 0.7257
- L8 . 0.7680 ¢ 0.7670 07698 | 0.7647 ! 0.7881
1.0 0819 0818 | 0.8208 0.8164 | 08413
1.2 0.8029 0.8622 | 08638 0.8604 = 1.8849
14 08985 © 08976 | 0.899G 0.8%6 | 0.9192
f1.6 © 09275+ 09260 | 09269 09255 | 09452
'1b 09486 09477 | 09483 09478 : 09641
1240 09646 ,  0963Y 0.9644 09645 | 09772
2.2, 09764 | 09757 0.9760 0970 : 0.9861
{24 09845 | 09840 09842 09850 | 09918 !
126 | 09905 | 09897 0.9898 0.9907 ‘ 0.9953
2.8 | 09937 | 09935 0.9936 0.9944 09974
30 i 0.9959J 0.9960 0.9961 0.9967 Lo.9987
Table 4.3

Exact Distribution and Approximations for Sample Size 28
for the Best L-Estimator under the Logistic Distribution

| ‘ | |
| | Rescaled | Unscaled 1
» | Exact | Saddlepoint ; Saddlepoint | Edgeworth | Normal
; | % ! J}
{02 05785 1 05763 | 05787 05762 | 05793 !
104 | 06492 1 0.6499 0.6518 0.6496 0.6554
‘ot 07152, 0.7181 0.719% 0.7178 0.7257
0.8 1 07728 } 0.7791 0.7803 0.7787 | 0.7881 S
P10 08295 1 0.8317 0.8326 0.8314 | 0.8413 R
112 08756 | 08754 0.8761 0.8751 ' 0.8849
i 1.4 | 09100 09103 0.9108 0.9102 0.9192
1.6 | 09376 09373 0.9377 09373 0.9452 ? 1
1.8 | 0.9580 09575 09577 09576 0.9641 v
2.0 | 09732 0.9720 0.9722 0.9721 0.9772
2.2 | 09830 0.9821 0.9822 0.9823 0.9861 .
2.4 | 09895 0.9889 0.9890 0.9891 0.9918
26 | 09942 0.9933 0.9933 0.9935 0.9953
2.8 | 09963 0.9961 0.9961 0.9962 0.9974
30 | 09982 0.9978 0.9978 0.9979 0.9987 .
Table 4.4
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